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a b s t r a c t

Model predictive control of discrete-time nonlinear systems with incremental input constraints is pro-
posed in this paper. Firstly, the existence of the terminal set and terminal penalty is proven on the assump-
tion that the considered system is twice continuously differentiable. Secondly, properties of the optimal
cost function are exploited. It shows that the optimal cost function is positive semi-definite, continuous at
the equilibrium and monotonically decreasing along the predicted trajectory. The systems under control
converge to the equilibrium since the optimal cost function is monotonically decreasing. Thirdly, stability
of nonlinear systems is proven in terms of the classical Lyapunov Theorem, where an upper bound of the
optimal cost function in the terminal set is chosen as a candidate Lyapuonv function. Finally, the system
is asymptotically stable since the system state converges to the equilibrium and the system is stable.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The control action of model predictive control (MPC) is com-
puted online to predict system behaviors over a time horizon,
where a certain cost function isminimized (Chen&Allgöwer, 1998;
Mayne, Rawlings, Rao, & Scokaert, 2000). The obtained optimal
input is then applied until the next sampling instant, and the pro-
cedure is repeated again with a new measurement. The main dif-
ference between MPC and classic control schemes is that a control
sequence rather than a control law is determined at each time in-
stant.

A constraint is anything that prevents the system from achiev-
ing its goal. There are three major types of constraints frequently
encountered in applications, i.e., constraints on control incremen-
tal variation, constraints on control amplitude variation, and con-
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straints on output or state (Wang, 2009). If constraints of the con-
sidered systems are not paid attention to, the closed loop control
performance could be severely deteriorated (Chen, 1997) in the
presence of constraints. Since it is easy to include all kinds of equal-
ity and inequality constraints in the optimization problem, MPC is
one of the most effective schemes to deal with constraints.

The change rate of variations of real systems is boundedmostly
due to the limits of physics or modeling assumptions. Beyond
the limits, either the model describing real systems is invalid or
the system performance is deteriorated. In particular, incremental
input constraints are serious challenges in many automatic
control applications, which can induce a considerable destabilizing
effect due to phase-lag (Angeli, Casavola, & Mosca, 2000; Berg,
Hammet, Schwartz, & Banda, 1996). Joint constraints on both input
magnitude and increment are considered in Tyan and Bernstein
(1997) for a system consisting of a chain of cascade integrators.
It is shown that a linear system subject to both the actuator
position and the rate saturation is semi-globally stabilizable by
linear state feedback control law, if it is asymptotically null-
controllable with bounded controls (Lin, 1997). Control of linear
systems with control constraint rate or increment with additive
bounded disturbances is considered in Mesquine, Tadeo, and
Benzaouia (2004, 2006), where necessary and sufficient conditions
that the system evolution respects rate or increment constraints
are used to derive stabilizing feedback control. Problems of
designing stabilizing regulators for linear systems subject to
control saturations and asymmetric constrains on its increment or
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rate are solved in Benzaouia, Tadeo, and Mesquine (2006), which
are valid for asymmetric constraints on the increment or rate of
the control. Predictive control of linear systems in the presence
of joint positional and incremental input saturation constraints
is developed in Angeli et al. (2000), Mosca and Tesi (2008) and
Mosca, Tesi, and Zhang (2008), where set-point tracking and
constant disturbances rejection problem are considered. Infinite
horizon MPC with incremental constraints is analyzed in Ding
(2009), Gonzalez and Odloak (2011), Gonzalez, Perez, and Odloak
(2009) and Rodrigues and Odloak (2003) for linear systems, where
the infinite horizon controllers are reduced to finite horizon
controllers by defining a terminal penalty. It is emphasized that all
these contributions deal mainly with the linear systems. Infinite
horizon MPC of nonlinear systems with incremental constraints is
proposed in Yu, Qu, and Chen (2013), where convergence rather
than asymptotic stability is discussed. MPC schemes of nonlinear
systemswith guaranteed stability consider state constraints, input
constraints and output constraints in their formulation. However,
in general, incremental input constraints are not taken into account
in Chen and Allgöwer (1998), Mayne et al. (2000), Rawlings and
Muske (1993) and Yu, Qu, Xu, and Chen (2015).

In this paper, finite horizon MPC of nonlinear systems with
state constraints, input constraints and incremental input con-
strains is proposed. Firstly, the existence of the terminal set,
terminal penalty and terminal control law is proven under the
assumption that the considered nonlinear systems is twice con-
tinuously differentiable. An extra terminal inequality is imposed
on the optimization problem in order to guarantee recursive fea-
sibility. Secondly, the properties of the optimal cost function of
the finite horizon MPC are exploited, which are continuous at the
equilibrium, positive semi-definite and monotonically decreasing
along the predicted trajectory. Furthermore, the terminal penalty
which is an upper bound of the optimal cost function in the termi-
nal set is chosen as a candidate Lyapunov function. Thus, stability
of the finite horizonMPC is proven in accordance with the classical
Lyapunov Theorem. Finally, asymptotic stability is claimed since
the system state converges to the equilibrium, and the system is
stable.

The organization of this paper is as follows. The problem setup
is introduced in Section 2. The properties of the optimal cost
function aswell as recursive feasibility of the optimizationproblem
are discussed in Section 3. Asymptotic stability of finite horizon
MPC of nonlinear systems is discussed in Section 4. A simulation
example is given in Section 5. Some concluding remarks are made
in Section 6.

1.1. Notations and basic definitions

LetR denote the field of real numbers andRn the n-dimensional
Euclidean space,Z the field of non-negative integers,Z+ the field of
positive integers, k+i|k the predicted value at the time instant k+i
starting from the time instant k. For a vector v ∈ Rn, ∥v∥ denotes
the 2-norm and ∥v∥Q =


vTQv with Q ∈ Rn×n and Q > 0. The

matrix I denotes the identity matrix with compatible dimension.
ForM ∈ Rn×n, λmin(M) (λmax(M)) is the smallest (largest) real part
of the eigenvalues of matrixM and σ(M) the largest singular value
ofM .

2. Problem setup

Consider discrete-time nonlinear systems:

xk+1 = f (xk, uk), (1)

where xk ∈ Rnx , uk ∈ Rnu are the system state and control input
at the time instant k, respectively. Denote the input increment as
∆uk, where ∆uk = uk − uk−1 for all k ≥ 1, and ∆u0 = u0.
The constraints of the system state, the control input and the
control increment are as follows:

xk ∈ X, k ≥ 0, (2a)
uk ∈ U, k ≥ 0, (2b)

∆uk ∈ ∆U, k ≥ 0, (2c)

where X is the admissible set of the system state, U and ∆U are
the admissible sets of control input and control increment.

In this paper, we assume that all states xk are measured instan-
taneously and there is neither external disturbance normodel per-
turbation at all.

The following assumptions are required for system (1):

Assumption 1. f : Rnx × Rnu −→ Rnx is twice continuously
differentiable, f (0, 0) = 0. That is, (0, 0) ∈ Rnx × Rnu is an
equilibrium of system (1).

Assumption 2. X ⊂ Rnx , U ⊂ Rnu and ∆U ⊂ Rnu are compact,
and the point (0, 0) lies in the interior of the set X × U.

Assumption 3. There exists a nu-dimension ball Pr ⊆ ∆U such
that ∥ϑ∥ ≤ r for all ϑ ∈ Pr , where r > 0 is a constant.

Note that Assumption 3 ensures that the set Pr is covered entirely
by the control incremental set ∆U ∈ Rnu .

At the time instant k, define the sequence of the control input

Uk := {uk|k, uk+1|k, . . . , uk+N−1|k}. (3)

The open-loop optimization problem of the finite horizon model
predictive control at the time instant k is formulated as follows:

Problem 4.

minimize
Uk

J(xk,Uk)

subject to:
xk+i+1|k = f (xk+i|k, uk+i|k), xk|k = xk, (4a)
xk+i|k ∈ X, i ∈ Z[1,N−1], (4b)
uk+i|k ∈ U, i ∈ Z[0,N−1], (4c)
∆uk+i|k ∈ ∆U, i ∈ Z[1,N−1], (4d)
Kxk+N|k − uk+N−1|k ∈ ∆U, (4e)
xk+N|k ∈ Ω, (4f)

where

J(xk,Uk) =

N−1
i=0

∥xk+i|k∥
2
Q + ∥uk+i|k∥

2
R + ∥xk+N|k∥

2
P (5)

and Q and R are positive definite matrices. The terminal set Ω and
the terminal penalty ∥xk+N|k∥

2
P will be introduced in the future.

Remark 5. In order to guarantee recursive feasibility, an extra
terminal constraint Kxk+N|k − uk+N−1|k ∈ ∆U is imposed on
Problem 4.

When i > 0, the control increment ∆uk+i+1|k := uk+i+1|k − uk+i|k.
Furthermore,

∆uk|k =


uk|k − uk−1, if k ≥ 1,
uk|k, if k = 0.

The control objective of finite horizon MPC is to achieve a finite
horizon control sequence by solving Problem 4 online such that
system (1) is stable, the performance (5) is minimized and the
constraints (2) are satisfied.

Although a finite horizon control sequence is achieved by
solving Problem 4, only the first control action in the sequence is
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applied to the considered systems. At the next time instant, the
whole process will be repeated with the new measurement of the
system states.

At the time instant k, the control sequence Uk is a feasible
solution to Problem 4 if

(i) for all i ∈ Z[0,N−1], the constraints (4b)–(4d) are satisfied;
(ii) the terminal constraints xk+N|k ∈ Ω and Kxk+N|k − uk+N−1|k ∈

∆U are satisfied;
(iii) the cost function (5) is finite, i.e.,

N−1
i=0

∥xk+i|k∥
2
Q + ∥uk+i|k∥

2
R + ∥xk+N|k∥

2
P < ∞.

Suppose that Problem 4 has an optimal solution U∗

k at the time
instant k,

U∗

k := {u∗

k|k, u
∗

k+1|k, . . . , u
∗

k+N−1|k}, (6)

and the corresponding optimal trajectory is denoted as

X∗

k := {x∗

k+1|k, x
∗

k+2|k, . . . , x
∗

k+N|k}. (7)

As only the first control action in the sequence U∗

k is applied to the
system, the actual control at the time instant k is

uk := u∗

k|k.

The Jacobian linearization of the nonlinear system (1) at the
equilibrium (0, 0) is

x̄k+1 = Ax̄k + Būk (8)

with A :=
∂ f
∂x |(0,0) and B :=

∂ f
∂u |(0,0).

Assumption 6. System (8) is stabilizable.

That is, there exists a linear state feedback control law u = Kx such
that the controlled system Ak := A + BK is asymptotic stability.
Without loss of generality, assume that Ak has at least a nonzero
eigenvalue. For such a given K , the following lemma can be proven.

Lemma 7. Suppose that Assumptions 1–3 and 6 are satisfied. Then,
(1) Lyapunov equation

κ2AT
kPAk − P = −(Q + K TRK) (9)

admits a unique positive definite solution P, where κ ∈


1, 1

τmax(Ak)


and τmax(Ak) is the maximummagnitude of the eigenvalues of matrix
Ak.
(2) There exists α > 0 which specifies an ellipsoid

Ω :=

x ∈ Rnx | xTPx ≤ α


,

such that

(i) Ω ⊆ X,
(ii) Kx ∈ U for all x ∈ Ω ,
(iii) K(x1 − x2) ∈ ∆U for all x1, x2 ∈ Ω ,
(iv) Ω is positive invariant for the nonlinear system (1) with the

linear control u = Kx,
(v) for any x ∈ Ω , and for the nonlinear system (1) with the linear

control law u = Kx
∞
i=0

∥xi|0∥2
Q + ∥ui|0∥

2
R ≤ xTPx, (10)

where x0|0 = x.
Proof. (1) For all κ ∈


1, 1

τmax(Ak)


, all the eigenvalues of κAk lie

in the unit circle since Ak is discrete-time stable. Thus, Lyapunov
function has a unique positive definite solution as Q + K TRK is
positive definite.

(2) (i)–(iii) Since the equilibrium (0, 0) ∈ X × U, there is a
positive constant α0 such that in the set

Ω0 := {x ∈ Rnx | xTPx ≤ α0},

the state constraints (2a) and control constraints (2b) are satisfied.
Next, we will show that there exists a constant α1 ∈ (0, α0]

such that the incremental input constraints (2c) are satisfied in the
set

Ω1 := {x ∈ Rnx | xTPx ≤ α1}.

Denote x1 and x2 as two arbitrarily chosen points in the setΩ1, then
∥x1 − x2∥ ≤ 2


α1

λmin(P)
.

For all k ≥ 0,

∥∆uk∥ = ∥K(xk − xk−1)∥

≤ ∥K∥ · ∥xk − xk−1∥

≤ ∥K∥ · max
∀x1,x2∈Ω1

∥x1 − x2∥

≤ ∥K∥2


α1

λmin(P)
.

Denote

α1 = min

α0,

r2λmin(P)

4∥K∥2


,

then ∥∆uk∥ ≤ r for all k ≥ 0.
Furthermore, the incremental constraints (2c) are satisfied,

since ∆uk ∈ Pr if ∥∆uk∥ ≤ r , and ∆uk ∈ ∆U if ∆uk ∈ Pr in
accordance with Assumption 3.

(iv) The time difference of xTPx along the trajectory xk+1 =

f (xk, Kxk) is

xTk+1Pxk+1 − xTkPxk
= (Akxk + φk)

TP(Akxk + φk) − xTkPxk
= κ2xTkA

T
kPAkxk − xTkPxk + (1 − κ2)xTkA

T
kPAkxk

+ xTkA
T
kPφk + φT

k PAkxk + φT
k Pφk, (11)

with φk := f (xk, Kxk) − Akxk.
Furthermore, there exists ξk := ς · 0 + (1 − ς)xk for some

ς ∈ (0, 1) such that

φk =
1
2
xTk

∂2f (ξk, Kξk)

∂x2k
xk +

1
2
xTk

∂2f (ξk, Kξk)

∂xk∂uk
Kxk

+
1
2
xTkK

T ∂2f (ξk, Kξk)

∂uk∂xk
xk

+
1
2
xTkK

T ∂2f (ξk, Kξk)

∂u2
k

Kxk

from the Mean Value Theorem.
Denote

CM(ξk) :=
∂2f (ξk, Kξk)

∂x2k
+

∂2f (ξk, Kξk)

∂xk∂uk
K

+ K T ∂2f (ξk, Kξk)

∂uk∂xk
+ K T ∂2f (ξk, Kξk)

∂u2
k

K .

Since f is twice continuously differentiable, CM(·) is continuous in
the set Ω1. For simplicity, denote

Cmax := sup
ξk∈Ω1

∥CM(ξk)∥.
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Thus, ∥φk∥ ≤
1
2Cmax∥xk∥2 for all xk ∈ Ω1. Furthermore,

φT
k Pφk + xTkA

T
kPφk + φT

k PAkxk

≤
1
4
C2
max∥P∥∥xk∥4

+ Cmax∥Ak∥∥P∥∥xk∥3. (12)

Choose an α ∈ (0, α1] such that

1
4
C2
max∥P∥∥xk∥2

+ Cmax∥Ak∥∥P∥∥xk∥ ≤ (κ2
− 1)λmin(AT

kPAk)

for all xk ∈ Ω , see Lemma 16 in the Appendix.
Then, for all xk ∈ Ω ,

φT
k Pφk + xTkA

T
kPφk + φT

k PAkxk

≤ (κ2
− 1)λmin(AT

kPAk)∥xk∥2. (13)

Since xTkA
T
kPAkxk ≥ λmin(AT

kPAk)∥xk∥2, one has

φT
k Pφk + xTkA

T
kPφk + φT

k PAkxk ≤ (κ2
− 1)xTkA

T
kPAkxk. (14)

Substituting (14) into (11) yields that

xTk+1Pxk+1 − xTkPxk ≤ κ2xTkA
2
kPAkxk − xTkPxk. (15)

Using the Lyapunov equation (9), one has then

xTk+1Pxk+1 − xTkPxk ≤ −xTk (Q + K TRK)xk. (16)

Since P > 0 and Q + K TRK > 0, nonlinear system (1) with the
linear control law u = Kx is asymptotically stable. Furthermore,
inequality (16) implies that the set Ω is invariant for nonlinear
system (1) with the linear control law u = Kx.

(v) For any x ∈ Ω , adding up (16) from 0 to ∞ with initial
condition xi|0 = x yields the desired results (10).

Note that the satisfaction of Eq. (13) for all xk ∈ Ω guarantees that
Ω is an invariant set for the original nonlinear systems with the
linear control law u = Kx.

3. Properties of the optimal cost function

Suppose that the optimization problem has a feasible solution
at x ∈ X, and define the corresponding cost function as

E(x) := min
Uk

J (x,Uk) .

The optimal cost function has the following properties.

Theorem 8. Considering the discrete-time nonlinear systems, the
optimal cost function E(x) has the properties as follows:

(i) E(0) = 0 and E(x) > 0 for all x ≠ 0,
(ii) E(x) is continuous at x = 0,
(iii) E(x) is monotonically decreasing along the predicted trajectory,

and

E(xk+1) ≤ E(xk) − ∥xk∥2
Q − ∥uk∥

2
R. (17)

Proof. (i) SinceQ > 0 and R > 0, E(x) > 0 as x ≠ 0. Given xk = 0,
the feasible solution is u∗

k+i|k ≡ 0, and the corresponding optimal
predicted trajectory is x∗

k+i+1|k ≡ 0, for all i ∈ [0,N − 1]. Thus,
E(xk) = 0 as xk = 0. In accordance with R > 0,

E(xk) ≥

N−1
i=0

∥x∗

k+i|k∥
2
Q + ∥x∗

k+N|k∥
2
P .

Obviously, E(xk) = 0 can be achieved only if x∗

k+i|k ≡ 0 for all
i ∈ [0,N]. Therefore, for all xk ≠ 0, E(xk) > 0.
(ii) In order to show the continuity of E(x) at the equilibrium
x = 0, pick up a point xk ∈ Ω with xk ≠ 0. Then,

Ūk =

Kxk|k, Kxk+1|k, . . . , Kxk+N−1|k


(18)

is a feasible solution to the optimization problem. In accordance
with Lemma 7, Ē(xk) := xTkPxk is an upper bound of the finite
horizon cost function. That is, E(xk) ≤ Ē(xk) for all xk ∈ Ω .

Since Ē(x) is twice continuously differentiable, Ē(x) is contin-
uous at x = 0. For any ϵ > 0, there exists δ0 > 0 such that
|Ē(x) − Ē(0)| ≤ ϵ as ∥x − 0∥ ≤ δ0.

Define a set

B0 :=


x ∈ Rnx | xT x ≤

α

λmax(P)


,

B0 ⊆ Ω . Denote δ := min

δ0,


α

λmax(P)


, then |E(x) − E(0)| ≤ ϵ

for all ∥x − 0∥ ≤ δ. Therefore, the optimal cost function E(x) is
continuous at x = 0.

(iii) Suppose that at the time instant k, the optimization prob-
lem has a feasible solution U∗

k , which satisfies the control con-
straints (4c) and the control incremental constraints (4d). The
corresponding predicted state sequence X∗

k satisfies state con-
straints (4b), and x∗

k+N|k ∈ Ω . Furthermore, the extra terminal
constraint Kx∗

k+N|k − u∗

k+N−1|k ∈ ∆U is satisfied. The control se-
quence (6) guarantees that the cost function

E(xk) =

N−1
i=0

∥x∗

k+i|k∥
2
Q + ∥u∗

k+i|k∥
2
R + ∥x∗

k+N|k∥
2
P

is finite.
Implement the control uk = u∗

k|k into the systems (1). The sys-
tem state at the time instant k + 1 is

xk+1 = f (xk, u∗

k|k).

Since neither model perturbations nor external exogenous is con-
sidered, xk+1 = x∗

k+1|k.
At the time instant k + 1, choose

Uk+1 ,

u∗

k+1|k, . . . , u∗

k+N−1|k, Kx∗

k+N|k,

, (19)

as a feasible solution to the optimization problem, which is a
shifted control sequence of the one obtained at the time instant k
followed by the linear control law. Since x∗

k+N|k ∈ Ω, Kx∗

k+N|k ∈ U.
Thus, the input constraint is satisfied for Uk+1.

In accordance with Uk+1, the state sequence is
xk+1+i|k+1 = x∗

k+1+i|k, i ∈ [1,N − 1],
xk+1+N|k+1 = f (x∗

k+N|k, Kx
∗

k+N|k), i = N,

which satisfies the state constraints. As Ω is invariant under the
linear control law, the terminal constraint (4f) is satisfied. Since
Kx∗

k+N|k − u∗

k+N−1|k ∈ ∆U and the linear control law Kx satisfies
the incremental input constraints for all x ∈ Ω , the incremental
constraints (4d) and the extra terminal constraint (4e) are satisfied
at the time instant k + 1.

The cost function at the time instant k + 1 is

Jk+1 =

N−1
i=0

xk+1+i|k+1
2
Q +

uk+1+i|k+1
2
R +

xk+1+N|k+1
2
P

=

N−2
i=0

x∗

k+1+i|k

2
Q

+
u∗

k+1+i|k

2
R

+
xk+N|k+1

2
Q +

uk+N|k+1
2
R + ∥xk+1+N|k+1∥

2
P

=

N−1
i=0

x∗

k+i|k

2
Q

+
u∗

k+i|k

2
R
−

x∗

k|k

2
Q



S. Yu et al. / Automatica 79 (2017) 265–272 269
−
u∗

k|k

2
R
+

x∗

k+N|k

2
Q

+
Kx∗

k+N|k

2
R

+
f (x∗

k+N|k, Kx
∗

k+N|k)
2
P

= E(xk) − ∥xk∥2
Q − ∥uk∥

2
R −

x∗

k+N|k

2
P

+
f (x∗

k+N|k, Kx
∗

k+N|k)
2
P
+

x∗

k+N|k

2
Q+KT RK

.

As x∗

k+N|k ∈ Ω , Eq. (16) is satisfied for nonlinear system (1) with
the linear control law u = Kx. Thus,

Jk+1 ≤ E(xk) − ∥xk∥2
Q − ∥uk∥

2
R .

Since E(xk) is finite, Jk+1 is finite. Thus, the candidate control se-
quence (19) is a feasible solution to Problem 4 at the time instant
k + 1. Furthermore, since the optimal solution is better than the
feasible solution,

E(xk+1) ≤ Jk+1 ≤ E(xk) − ∥xk∥2
Q − ∥uk∥

2
R . (20)

Therefore, E(x) is monotonically decreasing along the system tra-
jectory.

Remark 9. In general, neither the optimal control law nor the op-
timal cost function is necessarily continuous in the system states,
which is shown by Meadows, Henson, Eaton, and Rawlings (1995)
with an example. Thus, asymptotic stability cannot be obtained di-
rectly, since the candidate Lyapunov function is expected to be con-
tinuous in the classical Lyapunov Theorem.

Remark 10. Kellet and Teel revealed that the nonlinear system
xk+1 = f (xk, κ(xk)) is inherently robustly stable if and only if
it admits a continuous Lyapunov function (Kellet & Teel, 2004).
The considered system under model predictive control law may
be unstable for any small disturbance or perturbation, since the
optimal cost function chosen as the candidate Lyapunov function
may be discontinuous in the system states (Grimm,Messina, Tuna,
& Teel, 2004).

From the deduction of Theorem 8, it is easy to see that if the
optimization problem has a feasible solution at the time instant k,
then the optimization problem has a feasible solution at the time
instant k + 1. Thus, we come to the following conclusion:

Corollary 11. Suppose that Problem 4 has a feasible solution at the
time instant k = 0, Problem 4 has a feasible solution at each time
instant k > 0.

Proof. Due to the space limitation, it is omitted.

4. Properties of systems under control

In this section, properties of systems under model predictive
control are discussed. Convergence to the equilibrium is proven
by the monotonically decreasing of the optimal cost function, and
Lyapunov stability is proven by a candidate Lyapunov function
which is locally continuous. Asymptotic stability is proven in
accordance with convergence together with Lyapunov stability
locally. Furthermore, compactness of feasible sets is discussed.

4.1. Asymptotic stability of systems

Lemma 12. Suppose that
(i) Assumptions 1–3 and 6 are satisfied,
(ii) At the time instant k = 0, Problem 4 has a feasible solution,

then,

(1) xk converges to the set Ω in finite time,
(2) limk→∞ xk = 0.
Proof. (1) Firstly, it is proven by reduction to absurdity that there
exists a finite positive constant N such that xk ∈ B0 when k > N .
Let Φ(i; x) be the solution of the system under control that starts
from initial state x at time i, and Φ(0; x) = x. Suppose contrary to
what is to be proven thatΦ(k; x) ∉ B0 for all k > 0. Eq. (17) implies
that

E (Φ(k + 1; x)) ≤ E (Φ(k; x)) − ∥Φ(k; x)∥2
Q . (21)

By iterating Eq. (21) from 1 to k − 1, it is obtained that

E (Φ(k; x)) ≤ −

k−1
i=1

∥Φ(i; x)∥2
Q + E(x).

Since ∥Φ(i; x)∥ >


α
λmax(P)

for all i > 0,

E (Φ(k; x)) < −

k−1
i=1

αλmin(Q )

λmax(P)
+ E(x).

Thus, E (Φ(k; x))
k→∞
−−−→ −∞ since αλmin(Q )

λmax(P)
> 0 is constant, which

contradicts with E(x) ≥ 0 obviously.
(2) According to inequality (21), E(x) is monotonically non-

increasing. Furthermore, the lower bound of E(x) is E(0) = 0.
Thus, E(x) is convergent as k → ∞ for bounded and monotonic
sequence has a finite limit. By taking limits on both sides of
inequality (21), we have

lim
k→∞

∥xk∥2
Q ≤ lim

k→∞

E(xk) − lim
k→∞

E(xk+1) = 0.

Thus, xk → 0 as t → ∞.

The optimal cost function was firstly employed in Keerthi and
Gilbert (1988) as a Lyapunov function for establishing stability of
model predictive control of constrained time-varying nonlinear
discrete-times systems. Thereafter, the optimal cost function was
almost universally employed as a natural Lyapunov function for
stability analysis of model predictive control (Mayne et al., 2000).

The main difficulty to choose the optimal cost function as a
candidate Lyapunov function in the analysis of the stability is that
it is hard to show the continuity of it on the state x. In principle, the
concept of stability only reflects a local property of the system at
the equilibrium. Thus, in the following

V (x) := xTPx, ∀x ∈ Ω,

is chosen as the candidate Lyapunov function which is an upper
bound of the optimal cost function E(x), and continuously differ-
entiable in x.

Theorem 13. Suppose that
(i) Assumptions 1–3 and 6 are satisfied,
(ii) At the time instant k = 0, Problem 4 has a feasible solution,

then, the closed-loop system is asymptotically stable.

Proof. (i) Since V (0) = 0, V (x) > 0 for all x ∈ Ω with x ≠ 0, and

V (xk+1) − V (xk) ≤ −xTk

Q + K TRK


xk,

the system under finite horizon model predictive control is stable
in accordance with Haddad and Chellaboina (2007, Theorem 13.2).

(ii) Since xk converges to Ω in finite time if Problem 4 has a
feasible solution at the time instant k = 0 and limk→∞ xk = 0,
the system is asymptotically stable.

Remark 14. In finite horizon MPC, a N-step control sequence is
obtained by solving the optimization problem at each time instant
which drives the system state to the terminal set and the terminal
constraint is satisfied.With the N-step control sequence (a feasible
solution to the optimization problem), monotonic decrease of the
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cost function can be guaranteed. Thus, stability of the controlled
systems cannot be affected or altered if only a local optimum is
obtained.

4.2. Compactness of feasible sets

Denote Xj as the set of states in X that can be steered to the
terminal set Ω in j steps by an admissible control sequence

Xj :=

x ∈ X | ∃u ∈ U such that f (x, u) ∈ Xj−1


for j = 1, 2, . . . ,N (j is time to go), with the terminal condition
X0 = Ω .

AsXj ⊆ X inwhichX is bounded,Xj is bounded. In accordance
with Rawlings and Mayne (2009, Proposition 2.11), Xj is closed.
Thus, Xj is a compact set for j = 1, 2, . . . ,N .

Remark 15. To estimate or determine the domain of attraction
of the involved MPC problem is not a trivial work, cf. Genesio,
Tartaglia, and Vicino (1985) and Chesi (2009). In principle, the do-
main of attraction relies on the nonlinear properties of considered
systems, in particular, controllability of it.

5. Numerical example

In this section, a numerical example is investigated in order
to verify the effectiveness of the proposed method. The system is
described by

x(1)
k+1 = x(1)

k + 0.1x(2)
k + 0.1uk


µ + (1 − µ)x(1)

k


,

x(2)
k+1 = x(2)

k + 0.1x(1)
k + 0.1uk


µ − 4(1 − µ)x(2)

k


,

(22)

withµ = 0.5 and xk =

x(1)
k x(2)

k

T
. The linearized system of (22)

is unstable and controllable.
Assume that xk can be measured, and then the input constraint

and the incremental input constraint are

−2 ≤ uk ≤ 2, k ≥ 0,
−0.5 ≤ ∆uk ≤ 0.5, k ≥ 0.

The weighting matrices are chosen as Q = diag{0.5, 0.5}, R = 1.
First, a linear state feedback control matrix K = [−2.0107 −

2.0107] is got by solving a linear quadratic regulator (LQR) problem
with the weighting matrices for the locally linearized systems.
Note that other linear control laws which stabilize the locally
linearized systems can also be used to get a linear state feedback
control matrix. The largest eigenvalue in the sense of magnitude of
the closed-loop linear systems is λ(Ak) = 0.9. Then, a constant
κ = 1/0.91 is chosen to solve the Lyapunov equation (9).
The unique solution of (9) is P =


188.9674 166.0917
166.0917 188.9674


, which is

positive definite and can be used as a terminal penalty matrix. A
conservative terminal setΩ =


x ∈ R2

| xTPx ≤ 0.778

is derived

from trail and error which satisfies input constraints, incremental
constraints, state constraints and Eq. (13).

Fig. 1 shows the state trajectory, input and the variation of the
input of the considered system starting from x0 = [−3.0 2.0]′. The
solid line shows the trajectory of the systems with the proposed
scheme, and the dash-dotted line shows the trajectory of the
systems with the traditional MPC scheme (Mayne et al., 2000). The
prediction horizon isN = 20 for both the proposed scheme and the
traditional MPC scheme without the consideration of incremental
constraints. From Fig. 1, it can be seen that the incremental
constraint is violated at the first time instant if it is not considered
in the optimization problem.
Fig. 1. Comparison of the system dynamics and control input with and
without incremental input constraint, dash-dotted line: without incremental input
constraint, solid line: with incremental input constraint.

6. Conclusion

Incremental control constraint reflects the allowed change rate
of control input. In this paper, asymptotic stability of finite hori-
zon MPC with incremental input constraints was studied. The ex-
istence of the terminal set, terminal penalty and terminal control
law was proven under the condition that the considered systems
are twice continuously differentiable. The optimal cost function is
positive semi-definite, continuous at the equilibrium and mono-
tonically decreasing along the system trajectory. The system state
will converge to the equilibrium since the optimal cost function
is monotonically decreasing. Stability was proven by choosing the
upper bound of the optimal cost function in the terminal set as a
candidate control Lyapunov function. Furthermore, the system is
asymptotically stable since the system state converges to the equi-
librium and the system is stable.
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Fig. 2. H(∥x∥) of ∥x∥.

Appendix

Lemma 16. There exists α ∈ (0, α1] such that H (∥x∥) ≤ 0 for all
x ∈ Ω , where

H (∥x∥) :=
C2
max∥P∥

4
∥x∥2

+ Cmax∥Ak∥∥P∥∥x∥

−

κ2

− 1

λmin(AT

kPAk).

Proof. The equation H (∥x∥) = 0 has two solutions

∥x(1)∥ := −
2∥Ak∥∥P∥

Cmax∥P∥

+

2


∥Ak∥
2∥P∥2 + ∥P∥(κ2 − 1)λmin(AT

kPAk)

Cmax∥P∥
,

and

∥x(2)∥ := −
2∥Ak∥∥P∥

Cmax∥P∥

−

2


∥Ak∥
2∥P∥2 + ∥P∥(κ2 − 1)λmin(AT

kPAk)

Cmax∥P∥
.

where ∥x(1)∥ > 0 and ∥x(2)∥ < 0. The curve of H(∥x∥) of ∥x∥ is
shown in Fig. 2. Since ∥x∥ ≥ 0,H(∥x∥) ≤ 0 as ∥x∥ ∈


0, ∥x(1)∥


.

Choose α = min

α1, ∥x(1)∥

2λmin(P)

. Then, for all x ∈

Ω, ∥x∥ ≤


α

λmin(P)
≤ ∥x(1)∥. That is, H(∥x∥) ≤ 0 for all x ∈ Ω .
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